ArcGis-metode for å identifisere aktsomhetsområder for steinsprang

... eller «Steinsprang for Dummies»

Figuren viser aktsomhetsområder for steinsprang

Innhold

Datagrunnlag og bruk av metoden	1
Forbehold	1
Vokabular	1
0 Forberedelse til analysen	
0.1 Endring av negative verdier i terrengmodellen	
0.2 fylling av groper i terrengmodellen	5
1 Finne utfallsområder for steinsprang	6
1.1 Finne brattheten til terrenget	6
1.2 Bestemme hvor mulige løsnepunkt for steinsprang ligger	8
1.3 Finne punkter hvor steinsprang begynner å bremse	18
1.5 Sammenkobling av løsnepunkter mot bremsepunkter	24
1.6 Utskilling av høyeste løsnepunkt per drensområde	35
1.7 Beregning av alfa og beta vinkler	40
1.8 Markering av utløpsområder for potensielle løsnepunkter	45
2 Hvordan sette sammen resultatene til et ferdig aktsomhetskart	61
2.1 Sammenslåelse av raster	61
2.2 Buffer	64
Kilder	66

Datagrunnlag og bruk av metoden

Aktsomhetskart for steinsprang er i denne metoden gjort ved bruken av en terrengmodell, hentet fra Kartverket sin konstruerte «Nasjonal detaljert høydemodell» (NDH), og automatiske beregningsprosesser. Prosessene er i denne manualen gjennomgått i detalj og viser hvordan aktsomhetskart blir konstruert utifra terrengmodell som eneste datagrunnlag.

Terrengmodellen sin oppløsning (eller «ground sample distance» (GSD)) er, i denne manualen, valgt til å være 2 meter. Ved valg av denne oppløsningen vil løsneområder med mindre høydeforskjell enn 2 meter ikke være synlige, og falle utenfor kartleggingen. Terrengmodellens oppløsning er valgt ettersom høyere oppløsning (GSD = 1m) vil gi mange ekstra småområder uten å bidra i vesentlig grad til oppdagelsen av nye interessante steinsprangområder. Valg av lavere oppløsning (GSD = 5m) førte derimot til ekskludering av små løsneområder som er av interesse, og er bestemt til å være for lav.

Aktsomhetskartet som blir produsert ved bruk av beskrevet metode og oppløsing forsøker å inkludere små vesentlige skrenter. Hovedsakelig små skrenter som uteblir i andre aktsomhetskart for steinsprang med lavere oppløsning. Nytteverdien av disse kartene vil derfor gi størst bidrag der terrenget inneholder mange, og relativt små, skråninger. For områder med tydelige konturer i landskapet, eksempelvis store fjell og dalfører, vil anen produksjonsmetodikk og oppløsning være mer gunstig.

Forbehold

Aktsomhetskart produsert på bakgrunn av dette skrivet er kun ment som tidlige undersøkelser av geologiske forhold. De erstatter på ingen måte grundigere geologiske undersøkelser, og bør hverken legges som grunnlag for byggesaker eller ellers overtolkes i beslutningssituasjoner. Aktsomhetskartene erstatter på ingen måte fare- eller risiko-kart, og slike bør fortsatt konstrueres der det er nødvendig.

Aktsomhetskart som blir produsert på bakgrunn av denne malen er ment som et tilskudd til allerede eksisterende aktsomhetskart. Kartenes hensikt er å gi ytterligere innsikt i løsne- og utfalls-områder for henholdsvis små, potensielle, løsneområder for steinsprang, og bør benyttes i kombinasjon med eksisterende aktsomhetskart der det finnes.

Vokabular

Aktsomhetskart

Skredanalysene utført i denne oppgaven er av type aktsomhetsanalyser, og resulterer i aktsomhetskart. Slike analyser baserer seg på enkle terrengdata, som en terrengmodell og eventuelt eksisterende geologiske data, og viser kun hvor det er mulighet for skredfare.

Resultatområdene inkluderer løsneområder og automatisk beregnede utfallsområder for skred, og indikerer hvor det kan være skredfare. I disse områdene må det derfor gjøres videre geologiske analyser for å avklare den faktiske skredfaren. Utarbeidelse av aktsomhetskart er ment til å gi opplysning om hvor det er behov for ytterligere analyse, og må ikke benyttes til å beskrive den faktiske skredfaren for et område. Aktsomhetskartene er som regel konservative, og vil bli mindre dersom man foretar mer nøyaktige undersøkelser av faren for skred i samme område. Aktsomhetskart benyttes derfor i forkant av byggeprosjekter, og ellers i bebygde områder for å undersøke om det bør gjennomføres en mer nøyaktig geologisk kartlegging. (NVE, 2011b, 2011a)

Steinsprang

Steinsprang er her definert som bergartsfragmenter som løsner fra en fjellskrent. Fragmentene beveger seg fallende, sprettende og rullende til utflating av terrenget gjør at de mister fart og stopper. Fragmentene er relativt små i størrelse (få til noen hundre kubikkmeter) og gjennomgår ikke ytterligere fragmentering langs skredbanen. Resultatet av steinsprang er stort sett ur (talus). (Devoli mfl., 2011)

Rasterdata

Man kan tenke seg et rutenett som er lagt over et geografisk område. Informasjonen lagres i ett eller flere lag med rutenett. Hvert lag er bygd opp som en matrise av like store celler. Hver celle inneholder en verdi som representerer egenskaper ved det området som cellen dekker.

Alfa-beta modellen

Utfallsområdet beregnet i oppgaven er basert på «shadow angle»-konseptet (Heim, 1932). Konseptet tilsier at utfallslengden til et hvilket som helst skred kan beskrives igjennom en bratthetsvinkel(alfa) mellom skredets løsneområde og ytterkanten av dets tilhørende utfallsområde. Basert på dette konseptet er det allerede utviklet en modell for beregning av utfallsområder for snøskred, alfa-beta-modellen (Lied og Bakkehøi, 1980; Bakkehøi, Domaas og Lied, 1983).

Modellen benytter terrenget og empirisk bestemte koeffisienter basert på tidligere skred for å estimere det maksimale utløpsområdet for snøskred. En slik modell er også konstruert for steinsprang (U Domaas hos NGI), hvor kun de empiriske koeffisientene er annerledes. (Derron, Stalsberg og Sletten, 2016) Alfa-beta-modellen for beregning av utløpsområdet for skred:

- 1) Løsnepunktet (A) for et skred blir bestemt.
- 2) Skredbanen, med utgangspunkt i A blir plukket ut og dens høydeprofil tegnet opp
- 3) Punktet hvor skredet begynner å bremse (B) bestemmes.
- 4) Vinkelen (beta) mellom linjesegmentet BA og horisontalplanet regnes ut.
- Alfavinkelen beregnes på bakgrunn av det statistiske forholdet mellom alfa og beta, som ligger til grunn for alfa-beta-modellen. α=m*β-n, hvor m og n er empirisk bestemte koeffisienter.
- 6) Utfallsområdet for skredet bestemmes av skjæringspunktet mellom terrengets høydeprofil og linjestykket med startpunkt i A og skyggevinkel alfa.

Formel:

Alfa-Beta modellen. Figuren viser en terrengprofil med bestemt løsnepunkt (A), bremsepunkt (B), og tilhørende alfa- og betavinkel. Den røde vektoren viser skredets predikerte utløpslengde. (Derron, Stalsberg og Sletten, 2016)

Drensområde

Et drensområde beregnes for et punkt i terrenget og omfatter alle områder i terrengmodellen hvor en kan nå punktet ved å følge dreneringsnettverket nedover for samme terrengmodell.

Delineated watersheds (Esri)

0 Forberedelse til analysen

For konstruksjon av aktsomhetskart behøver man kun høydeinformasjonen til et terreng representert som raster-data. Terrengmodellen er en «Digital Terreng Modell» (DTM) og representerer kun terrenget med hverken trær eller bygninger. For at metoden skal støte på minst mulig beregningsproblematikk er det nødvendig å behandle terrengmodellen før andre beregningsprosesser påføres. Alle celler som er negative settes derfor til 0 og alle groper fylles igjen, så vi ender opp med en terrengmodell hvor alt til slutt renner utfor kanten. Terrengmodellen man starter med kalles «terrengmodell_raw» i dette dokumentet.

0.1 Endring av negative verdier i terrengmodellen

Før rasteret skal benyttes i analysen bør det renses for negative høydeverdier. Slike verdier er celler i terrengmodellen som har en høydeverdi under 0. De negative verdiene kan regnes som støy vi har lyst til å korrigere, og som vi derfor endrer til 0. Dette gjøres ved å sette alle de negative verdiene i rasteret til 0 der det er tilfelle. Her anbefales «Con»-verktøyet i ArcGis.

Con:

- Input: terrengmodell_raw.tif
- Expression: VALUE < 0
- Input true raster or constant value: 0
- Input false raster or constant value: terrengmodell_raw.tif
- Output: terrengmodell.tif

Con	×
Parameters Environments	?
Input conditional raster	
terrengmodell_raw.tif	- 🧰
Expression	
SQL 🔄 🔄	
VALUE is Less Than 0	
Add Clause 📏 🗸	1 🥯 🔒
Input true raster or constant value	
0	-
Input false raster or constant value	
terrengmodell_raw.tif	- 🧁
Output raster	
terrengmodell.tif	i
	ОК

0.2 fylling av groper i terrengmodellen

For å bestemme hvilken vei skredet går er det valgt å følge bratteste helnings retning. Et kriterie for at denne analysen skal fungere er at noe som beveger seg i bratteste retning på terrengmodellen til slutt må nå kanten av terrengmodellen. For at dette skal skje må vi fylle igjen alle groper som eventuelt ville stoppe bevegelsen. Her benyttes verktøyet «Fill» på følgende måte:

Fill:

- Input: terrengmodell.tif
- Output: terrengmodell_fill

Fill		Х
Parameters Environments		?
Input surface raster		
terrengmodell.tif	-	
Output surface raster		
terrengmodell_fill	1	
Z limit		•
	ОК	

1 Finne utfallsområder for steinsprang

For å kunne konstruere aktsomhetskart for steinsprang må vi først finne ut hvor det kan løsne steinsprang, og hvilke områder de vil falle ut over. I denne metoden er alle skråninger med en helning på mer enn 34 grader valgt som potensielle løsneområder for steinsprang, og alfa-beta-modellen til å beregne hvor langt de går.

For å beregne utfallsområdene beregner vi først verdiene en behøver i alfa-beta modellen (løsnepunkt, bremsepunkt, og tilhørende størrelser som posisjon og høyde). Alfa-beta modellen er originalt ment for snitt av terrenget, så vi må finne ut hvilket bremsepunkt som tilhører hvert løsnepunkt. Etter det er gjort lagrer vi all informasjonen som trengs til å regne alfavinkelen, som attributter for hvert løsnepunkt.

Vi sitter nå med en utregnet alfavinkel for hvert løsnepunkt. Denne vinkelen må nå realiseres i terrenget og markere alt område mellom løsnepunktet og der vinkelen krysser terrenget som potensielt utfallsområde. Dette gjøres for alle interessante løsnepunkt. Etter utførelse av dette kapittelet vil vi sitte igjen med et raster-kart over alle områder som endte opp under en slik vinkel.

Under gjennomføringen av dette kapittelet er det også gjort filtrering av hva som menes er interessante løsnepunkter. Mange potensielle løsnepunkt faller ut over samme område og gir overflødig informasjon. De som gir overflødig informasjon, er forsøkt fjernet. I tillegg er det gjort en begrensning når områder markeres som utfallsområde, ved å si at skredet ikke sprer seg i alle retninger, men holder seg innenfor en viss spredning mot sitt tilhørende bremsepunkt. Målet for disse inngrepene er å spare beregningstid.

1.1 Finne brattheten til terrenget

Konstruksjonen av utfallsområdene starter med en enkel helningsanalyse for å finne ut hvor bratt terrenget er. Denne brukes senere for å finne ut hvilke områder som er løsneområder og bremseområder for alfa-beta modellen.

Benytt verktøyet «Slope» på «terrengmodell_fill»-rasteret du har laget.

Slope:

- Input: terrengmodell_fill
- Output: terrengmodell_slope

Slope	×
Parameters Environments	?
Input raster	
terrengmodell_fill	▼
Output raster	
terrengmodell_slope	i i i i i i i i i i i i i i i i i i i
Output measurement	
Degree	•
Method	
Planar	•
Z factor	1 -
	ОК

Analysen må også snappes til originalrasteret. Terrengmodellen velges derfor også under «snap raster» i «Environments» fanen.

Slope		×
Parameters Enviro	onments	?
Output Coordinate S	ystem	•
(i) Geographic Transform	nations	
		•
Extent		Default 👻
Snap Raster		
terrengmodell_fill		
Cell Size		
Maximum of Inputs		-
Mask		
Output CONFIG Keyw	vord	
Auto Commit		1000
Tile Size	Width	128
	Height	128
		ОК

- Snap raster: terrengmodell_fill

1.2 Bestemme hvor mulige løsnepunkt for steinsprang ligger

Løsnepunkt er en av parameterne som behøves i alfa-beta modellen (A) og bestemt som sentrum av hver celle hvor helningen er analysert til å være brattere enn 34 grader. Terskelverdien kommer fra tidligere utarbeidet helningsanalyse av terrengmodeller i Norge (Derron et al, 2016), og er valgt som en konservativ terskelverdi for steinspranghendelser.

I dette steget klassifiserer vi løsneområder for steinsprang. Vi huler ut disse områdene ettersom vi bare ønsker å beregne utfallsområdene for de øverste løsnepunktene som ligger i øvre kant av hvert løsneområde. Resultatet blir omgjort til punkter som representerer potensielle løsnepunkter for steinsprang med tilhørende høydeverdi, id og koordinater.

1.2.1 Reklassifisering av helning

For å produsere løsnepunktene benyttes først «Set Null» for å konstruere et raster hvor alle potensielle løsneceller får verdien 1 og resten blir satt til NoData.

Set Null:

- Input: terrengmodell_slope
- Expresion: VALUE < 34
- Input false raster or constant value: 1
- Output: rasomrade_raster

1.2.2 Uthuling av løsneområder

Ettersom det ikke er nødvendig å beregne utfallsområder for hele det potensielle løsneområde, men bare de som gir lengst utfall, holder det å beregne utfallsområdene for cellene langs kanten av områdene. Vi er egentlig kun interessert i de løsnecellene som ligger i øvre kant av løsneområde, men inkluderer også de i nedre kant ved å benytte denne metoden. Hvert potensielt løsneområde blir hulet ut på følgende måte:

1. Kjør «Focal statistics» for å beregne hvor mange løsneceller hver løsnecelle er omringet av

Focal statistics:

- Input: rasomrade_raster
- Output: rasomrade_raster_kernelsum
- Statistics type: Sum

Focal Statistics		×	
Parameters Environments		?	
(i)Input raster			
rasomrade_raster	•		
Output raster			
rasomrade_raster_kernelsum			
Neighborhood	Rectangle	•	
Width		3	
Height		3	
Units type	Cell	•	
Statistics type	L		
Sum		-	
✓ Ignore NoData in calculation	IS		
	OK		
Tansklet/ Billingstad o SKE Skaugum Skaugum Skaugum Skaugum Skaugum Skaugum Billingstad o Billingstad			
0 0.5 1 2 Kilometersstenstad 0	0,04 0,07 0,15 Kilo	meters	Kartverket, Geovelst og kommuner - Geodata AS

2. Det forrige resultatet regner også hvor mange løsneceller som omringer områder utenfor selve løsneområdene. Dette resulterer i at vi får en kant med celler lagt utenpå løsneområdene som også inneholder et tall for «antall omringende løsneceller». Denne må fjernes ettersom den faktisk ikke representerer løsneområde. For å fjerne den multipliserer vi det produserte rasteret med «rasomrade_raster». Dette skal resultere i et raster hvor hver løsnecelle som ligger i kanten av løsneområdet vil ha en verdi mindre enn 9.

Raster calculator:

- Expresion: "%rasomrade_raster%" * "%rasomrade_raster_kernelsum%"
- Output: rasomrade_raster_slevedesition

3. Vi benytter «Set Null» igjen for å plukke ut de cellene med høydeverdier, fra det fylte høyde-rasteret («terrengmodell_fill»), som ligger i kanten av løsneområdene.

Set Null:

- Input: rasomrade_raster_slevedesition
- Expresion: VALUE > 8
- Input false raster or constant value: terrengmodell_fill
- Output: losneomrade_sleve

Set Null: Set Null (3)	×
Parameters Environments	?
1 Input conditional raster	
rasomrade_raster_slevedesition -	
Expression	
Sal 🔹 🔿	
VALUE is Greater Than 8	
Add Clause 📏 🗸 🧁	
Input false raster or constant value	
terrengmodell_fill •	
Output raster	
losneomrade_sleve	
OK	:

1.2.3 Konvertering til punkt

Disse cellene konverteres nå til punkter med sin egen høydeverdi som attributt ved å benytte «Raster to Point». Denne operasjonen vil lage et punktdatasett med et attributt med navn «grid_code» som inneholder cellens høyde, plassert i cellens sentrum.

Raster to point:

- Input: losneomrade_sleve
- Output: losnepunkt_m_hoyde

Raster to Point	×
Parameters Environments	?
Input raster	
losneomrade_sleve	-
Field	
Value	
Output point features	
losnepunkt_m_hoyde	
C	ж

1.2.4 Beregning av nyttig informasjon

Det er behov for å lagre informasjon som høyde, koordinater og ID som gjenkjennelige attributter for senere bruk. Tallene vil bli benyttet til å beregne vinkler, og til å identifisere individuelle løsnepunkt senere i analysen. Det legges derfor på nye attributter som losnepunkt_ID (for å identifisere dem senere), samt losnepunkt_hoyde, losnepunkt_X, og losnepunkt_Y for å holde på denne informasjonen.

Add field:

- Input: losnepunkt_m_hoyde
- Field name: losnepunkt_ID

Add Field	Х
Parameters Environments	?
Input Table	
losnepunkt_m_hoyde 🔹	
Field Name	
losnepunkt_ID	•
(1) Field Type	
Long (large integer)	•
Field Precision	•
Field Alias	
	•
✓ Field IsNullable	
Field IsRequired	
Field Domain	
	•
OK	

Calculate Field:

- Input: losnepunkt_m_hoyde
- Field Name: losnepunkt_ID
- Expression losnepunkt_ID = : !OBJECTID!

(!OBJECTID! referer til den første kolonna i atributtabellen til «losnepunkt_m_hoyde», hvor hvert objekt (punkt) har blitt tildelt en id.)

Calculate Field	X
Parameters Environments	?
Input Table Iosnepunkt_m_hoyde (2) Field Name Iosnepunkt_ID Expression Type Python 3 Expression Fields	Helpers
OBJECTID Shape pointid grid_code losnepunkt_ID	.conjugate() .denominator() .imag() .numerator() .real() .as_integer_ratio() .fromhex()
Insert Values Iosnepunkt_ID = IOBJECTID!	* / + - =
Code Block	
1	OK

Add XY Coordinates:

- Input: losnepunkt_m_hoyde

Add XY Coordinates: Add XY Coordinates (2)	×
Parameters Environments	?
Input Features	
losnepunkt_m_hoyde (3)	-
	ок

Denne operasjonen legger på koordinat-attributter på hvert punkt. «POINT_X» og «POINT_Y»

Etter disse operasjonene bør attributt-tabellen til løsnepunktene se slik ut, med de fire kolonnene:

- grid_code
- losnepunkt_ID
- POINT_X
- POINT_Y

	III losnepunkt_m_hoyde (4) ×							
Fie	Field: 📰 Add 🕎 Delete 📰 Calculate 🛛 Selection: 🕀 Zoom To 🔮 Switch 📃 Clear 戻 Delete							
	OBJECTID	Shape	pointid	grid_code	losnepunkt_ID	POINT_X	POINT_Y	
	1	Point	1	216,5017	1	579687,385131	6637668,400111	
	2	Point	2	214,5187	2	579689,385131	6637668,400111	
	3	Point	3	212,4385	3	579697,385131	6637668,400111	
	4	Point	4	210,1887	4	579699,385131	6637668,400111	
	5	Point	5	207,8426	5	579701,385131	6637668,400111	
	6	Point	6	205,6805	6	579703,385131	6637668,400111	
	7	Point	7	203,5065	7	579705,385131	6637668,400111	
	8	Point	8	201,6358	8	579707,385131	6637668,400111	
			-		-			

Attributtenes navn gjøres nå om til gjenkjennelige navn med «Alter Field»

Alter Field:

- Input: losnepunkt_m_hoyde
- Field Name: grid_code
- New Field Name: losnepunkt_hoyde

Alter Field: Alter Field (2)	×
Parameters Environments	?
Input Table	
losnepunkt_m_hoyde (4)	-
Field Name	
grid_code	•
New Field Name	
losnepunkt_hoyde	•
New Field Alias	
	•
Clear Alias	
	ОК

Alter Field:

- Input: losnepunkt_m_hoyde
- Field Name: POINT_X
- New Field Name: losnepunkt_X

Alter Field: Alter Field (8)	×
Parameters Environments	?
Input Table	
losnepunkt_m_hoyde (5)	-
Field Name	
POINT_X	•
New Field Name	
losnepunkt_X	•
New Field Alias	
	-
1 Clear Alias	
	ОК

Alter Field:

- Input: losnepunkt_m_hoyde -
- -
- Field Name: POINT_Y New Field Name: losnepunkt_Y -

Alter Field: Alter Field (6)	×
Parameters Environments	?
(1) Input Table	
losnepunkt_m_hoyde (6)	- 🦳
Field Name	
POINT_Y	•
New Field Name	
losnepunkt_Y	-
New Field Alias	
	-
Clear Alias	
	ОК

Resultatet ser slik ut:

🔢 losnepunkt_m_hoyde (4) 🔀								
Field: 📰 Add 🕎 Delete 🕎 Calculate 🛛 Selection: 🤠 Zoom To 📲 Switch 📄 Clear 💭 Delete								
4	OBJECTID	Shape	pointid	losnepunkt_hoyde	losnepunkt_ID	losnepunkt_X	losnepunkt_Y	
	1	Point	1	216,5017	1	579687,385131	6637668,400111	
	2	Point	2	214,5187	2	579689,385131	6637668,400111	
	3	Point	3	212,4385	3	579697,385131	6637668,400111	
	4	Point	4	210,1887	4	579699,385131	6637668,400111	
	5	Point	5	207,8426	5	579701,385131	6637668,400111	
	6	Point	6	205,6805	6	579703,385131	6637668,400111	
	7	Point	7	203,5065	7	579705,385131	6637668,400111	
	8	Point	8	201,6358	8	579707,385131	6637668,400111	
	-		-		-			

1.3 Finne punkter hvor steinsprang begynner å bremse

For konstruksjon av disse punktene følges instruks for «konstruksjon av potensielle løsnepunkt» med noen små justeringer. Cellene vi nå vil ha tak i er de med helning under 23 grader. I verktøyet «Set Null» tester vi derfor med «VALUE > 23», og setter dem til 1, og resten av cellene til «NoData». Ellers er metodikken den samme (se kapittel 1.2.2 og 1.2.3). Disse områdene vil også bli hulet ut ettersom vi kun er interessert i det første bremsepunktet for hvert skred når vi benytter alfa-beta modellen. Resultatet vil bli bremsepunkter med tilhørende høyde, id og koordinater.

Set Null:

- Input: terrengmodell_slope
- Expresion: VALUE > 23
- Input false raster or constant value: 1
- Output: bremseomrade_raster

Set Null: Set Null (2)		Х
Parameters Environments		?
Input conditional raster		
terrengmodell_slope	•	
Expression		
VALUE > 23		
		Ŧ
	ا 🛁 🗸 🌭	-
Input false raster or constant value		
1	-	-
Output raster		
bremseomrade_raster	1	
	OK	

Følg prosessen i 1.2.2-1.2.3:

Focal statistics

- Input: bremseomrade_raster
- Output: bremseomrade_raster_kernelsum
- Statistics type: Sum

Raster Calculator

- Expresion: "% bremseomrade_raster %" * "% bremseomrade_raster_kernelsum %"
- Output: bremseomrade_raster_slevedesition

Set Null:

- Input: bremseomrade_raster_slevedesition
- Expresion: VALUE > 8
- Input false raster or constant value: terrengmodell_fill
- Output: bremseomrade_sleve

Raster to Point

- Input: bremseomrade_sleve
- Output: bremseomrade_m_hoyde

Uthulingsprosessen, samt lagring av høyde, ID, og X og Y koordinater er den samme som for «løsnepunktene» (se kp.1.2.4) foruten om navnene:

Add Field:

- Input: bremsepunkt_m_hoyde
- Field Name: bremsepunkt_ID

Add Field: Add Field (2)	×
Parameters Environments	?
Input Table	
bremsepunkt_m_hoyde	
Field Name	
bremsepunkt_ID	•
Field Type	
Long (large integer)	-
Field Precision	•
Field Alias	
	•
✓ Field IsNullable	
Field IsRequired	
Field Domain	
	•
	ОК

Calculate Field:

- Input: bremsepunkt_m_hoyde
- Field Name: bremsepunkt_ID
- Expression bremsepunkt_ID = : !OBJECTID!

Alter Field:

- Input: bremsepunkt_m_hoyde
- Expresion: GRID_CODE
- New Field Name: bremsepunkt_hoyde

Alter Field: Alter Field (5)	×
Parameters Environments	?
(i) Input Table	
bremsepunkt_m_hoyde (4)	-
Field Name	
GRID_CODE	•
New Field Name	
bremsepunkt_hoyde	•
New Field Alias	
	•
Clear Alias	
	ОК

Add XY Coordinates:

- Input: bremsepunkt_m_hoyde

Alter Field:

- Input: bremsepunkt_m_hoyde
- Expresion: POINT_X
- New Field Name: bremsepunkt_X

Alter Field: Alter Field (4)	×
Parameters Environments	?
Input Table	
bremsepunkt_m_hoyde (5)	-
Field Name	
POINT_X	•
New Field Name	
bremsepunkt_X	•
New Field Alias	
	-
Clear Alias	
	ОК

Alter Field:

- Input: bremsepunkt_m_hoyde
- Expresion: POINT_Y
- New Field Name: bremsepunkt_Y

Alter Field: Alter Field (3)	×
Parameters Environments	?
() Input Table	
bremsepunkt_m_hoyde (6)	- 🚞
Field Name	
POINT_Y	-
New Field Name	
bremsepunkt_Y	-
New Field Alias	
	-
Clear Alias	
	ок

Resulterende attributt-tabell:

	🛄 bremsepunkt_m_hoyde (7) 🗙						
Fie	Field: 📰 Add 🕎 Delete 📰 Calculate 🛛 Selection: 🕀 Zoom To 📲 Switch 📄 Clear 💭 Delete						
4	OBJECTID	Shape	pointid	bremsepunkt_hoyde	bremsepunkt_ID	bremsepunkt_X	bremsepunkt_Y
	1	Point	1	217,9303	1	579529,385131	6637668,400111
	2	Point	2	218,0298	2	579531,385131	6637668,400111
	3	Point	3	218,0437	3	579533,385131	6637668,400111
	4	Point	4	218,0506	4	579535,385131	6637668,400111
	5	Point	5	218,0896	5	579537,385131	6637668,400111
	6	Point	6	218,1123	6	579539,385131	6637668,400111
	7	Point	7	218,0126	7	579541,385131	6637668,400111
	8	Point	8	217,9515	8	579543,385131	6637668,400111
	-		-		-		

Oversikt potensielle løsnepunkt og bremsepunkt

Så langt i analysen av terrengmodellen har vi beregnet hvordan terrengmodellen heller, funnet potensielle løsneområder og bremseområeder. Hulet dem ut for å redusere overflødig informasjon, og gjort dem om til punkter med følgende nødvendige tilhørende egenskaper:

Attributter Løsnepunkt:

- losnepunkt_ID
- losnepunkt_hoyde
- losnepunkt X
- losnepunkt_Y

Attributter Bremsepunkt:

- bremsepunkt_ID
- bremsepunkt_hoyde
- bremsepunkt_X
- bremsepunkt_Y

1.5 Sammenkobling av løsnepunkter mot bremsepunkter

I denne analysen benytter vi alfa-beta modellen (hvor empiriske bestemte koeffisienter blir benyttet for å predikere lengden for et steinsprang), hvilket predikerer utløpslengden til steinsprang basert på forholdet mellom løsnepunktet og bremsepunktet i skråningen. Vi antar at et hvilket som helst steinsprang løsner fra et løsnepunkt, fortsetter ned skråningen i bratteste retning, begynner å bremse når det når et bremsepunkt, før det stopper kort tid etter.

For å finne ut hvilke bremsepunkt hvert løsnepunkt tilhører benytter vi verktøyet «Watershed» i ArcGis. Verktøyet lager et drensområde for hvert av bremsepunktene. Drensområdet til et bremsepunkt overlapper ikke med andre, og markerer hvilket område med celler som til slutt vil ende opp i sitt bremsepunkt hvis man følger raskeste vei ned skråningen. Alle løsnepunkt som ligger inni et drensområde, vil til slutt nå det tilhørende bremsepunktet ved å følge raskeste vei ned skråningen. Hvert drensområde inneholder bremsepunktets identifikasjon og en kan nå finne ut hvilket bremsepunkt et løsnepunkt tilhører ved å trekke ut id-verdien til underliggende drensområde-celle.

For å spare beregningstid har vi her valgt å lage enda tre identiske «watershed»-analyser hvor cellene ikke inneholder bremsepunktets id, men heller dets høyde, og koordinater. Disse fire verdiene (id, høyde, og koordinater) blir trukket opp i hvert løsnepunkt for videre analyse. Resultatet av denne delen er at løsnepunktene vil ha informasjon om sine tilhørende bremsepunkt (høyde, id, og koordinater) som attributter.

Drensområder for bremsepunkt Figuren viser drensområdene for fire bremsepunkter i forskjellige farger. Hvert løsnepunkt ligger i et drensområde som til slutt drenerer til sitt individuelle bremsepunkt.

1.5.1 Prepping av punktdata

Før informasjonen kan overføres til egenskaper for drensområdet er vi nødt til å gjøre dem om til heltall («watershed» aksepterer ikke desimaler). ID-feltet er allerede i riktig format og behøves ikke konverteres. Konverteringen gjøres ved å først benytte «Calculate Fields»:

Calculate Fields:

- Input: bremsepunkt_m_hoyde

Field Name:	Expression:
bremsepunkt_X	int((!bremsepunkt_X!+0.005)*100)
bremsepunkt_Y	int((!bremsepunkt_Y!+0.005)*100)
bremsepunkt_hoyde	int((!bremsepunkt_hoyde!+0.005)*100)

Calculate Fields ×						
Paran	neters Environments		(?)			
Inpu brei	t Table msepunkt_m_hoyde (7)		-			
Expre	Expression Type					
Field	ls I Name Ϙ		Expression			
	bremsepunkt_X	•	int((!bremsepunkt_X!+0.005)*100)			
	bremsepunkt_Y	•	int((!bremsepunkt_Y!+0.005)*100) -			
	bremsepunkt_hoyde	•	int((!bremsepunkt_hoyde!+0.005)*100) 🔻			
		•	•			
Code	e Block		A			
			ОК			

Dette runder av sifrene til andre desimal. (Disse verdiene skal senere i analysen hentes tilbake.)

Beregningen resulterer i følgende tabell:

🗰 bremsepunkt_m_hoyde (8) ×									
Field: 📰 Add 🕎 Delete 🕎 Calculate 🛛 Selection: 🕀 Zoom To 🖓 Switch 📄 Clear 👮 Delete									
OBJECTID Shape pointid bremsepunkt_hoyde bremsepunkt_ID bremsepunkt_X bremsepunkt_Y									
	1	Point	1	21793	1	57952939	663766840		
	2	Point	2	21803	2	57953139	663766840		
	3	Point	3	21804	3	57953339	663766840		
	4	Point	4	21805	4	57953539	663766840		
	5	Point	5	21809	5	57953739	663766840		
	6	Point	6	21811	6	57953939	663766840		
	7	Point	7	21801	7	57954139	663766840		
	8	Point	8	21795	8	57954339	663766840		

Deretter endrer vi datatypen til feltene til å være heltallsattributter. Dette gjøres ettersom «watershed»-verktøyet som skal benyttes senere i analysen må ha heltallsattributter for å gi riktig resultat. Vi benytter her «Feature Class to Feature Class» for å endre attributt-typen.

Feature Class to Feature Class:

- Input: bremsepunkt_m_hoyde
- Output Location: database¹
- Output Feature Class: bremsepunkt_m_hoyde_int

Her kan det hende vi først må trykke på «reset» for at attributtene skal vises.

¹ Her peker du på den romlige databasen som passer deg best. ArcGis pro oppretter en slik database automatisk ved oppretting av nytt prosjekt, og kan finnes inni prosjektmappen til prosjektet.

Feature Class to Feature Class ×							
Parameters Environments (?)							
Input Features bremsepunkt_m_hoyde (8) Output Location	Input Features bremsepunkt_m_hoyde (8)						
database Output Feature Class bremsepunkt_m_hoyde_int							
Expression							
Click Add Clau your query or your expressio	ise to begin building click SQL to write n directly.						
Add Clause	s 🖌 🖌 🤌						
Output Fields (+)	Source Propertie Rese						
pointid bremsepunkt_hoyde bremsepunkt_ID bremsepunkt_X bremsepunkt_Y	Merge Rule First G:\dummy_setup\konstri pointid Add New Source						
Geodatabase Settings	ОК						

Så trykker vi oss igjennom hver av de fire attributtene vi ønsker å endre datatype til. For hver av dem endrer du «Type» til «Long Integer» under «Properties» fanen. Hvis dette ikke gjøres kan «watershed» analysen fortsatt gi resultater, men som er gale resultater.

Feature Class to Feature Class ×								
Parameters Environments (?)								
Input Features								
bremsepunkt_m_hoyde (8) 🔹 🔎 🖬								
Output Location								
database	database 🔹 🧎							
Output Feature Class								
bremsepunkt_m_hoyde_int				•				
Expression								
sql 🗧 🗧								
Add Clause	click SQL to on directly.	write	, ~ 😑 [3				
Output Fields (+)	Source Properties Field Name bremsepunkt_hoyde Alias							
* nointid								
hremsenunkt hovde								
bremsepunkt_Noyde								
bremsepunkt_ID	bremsepunkt_hoyde							
bremsepunkt_X	Туре	Float		-				
premsepunkt_r	Precision	Short	Integer					
	Casla	Long Integer						
	Scale	Float						
> Condetabase Cottings		Doubl	e					
Geodatabase Settings		Text						
		Date						
		Blob						

1.5.2 Konstruksjon av flyt-raster

«Watershed»-analysen krever et flytraster som datagrunnlag.

Flytrasteret(terrengmodell_flowdir) lages med «Flow Direction»-verktøyet, hvor den tidligere konstruerte, fylte, terrengmodellen(terrengmodell_fill) brukes som datagrunnlag:

Flow Direction:

- Input: terrengmodell_fill
- Force all edge cells to flow outward: ☑
- Output: terrengmodell_flowdir

Flow Direction	Х
Parameters Environments	?
Input surface raster	1
terrengmodell_fill •	
Output flow direction raster	1
terrengmodell_flowdir	
✓ Force all edge cells to flow outward	
Output drop raster	,
Flow direction type	
D8	-
OK	

Merk også at «Force all edge cells to flow outward» er markert.

1.5.3 Konstruksjon av drensområder med «watershed»

I denne analysen konstrueres fire drensområde-rastere, et for hvert attributt vi ønsker å videreføre til det tilhørende løsnepunktet. For alle analysene velges det nylige konstruerte flyt-rasteret som datagrunnlag for flyt-retning, og bremsepunktene som «Pour points». For hvert av de fire interessante attributtene (ID, høyde, og koordinater) velges det aktuelle attributtet i «Pour point field».

Watershed:

- Input D8 flow direction raster: terrengmodell_flowdir
- Input raster or feature pour point data: bremsepunkt_m_hoyde_int
- Pour point field: bremsepunkt_hoyde
- Output raster: watershed_bremsepunkt_hoyde

Watershed: Watershed (2)	×
Parameters Environments	?
Input D8 flow direction raster	
terrengmodell_flowdir	- 😑
Input raster or feature pour point data	
bremsepunkt_m_hoyde_int	- 🧀 🦯 -
Pour point field	
bremsepunkt_hoyde	•
Output raster	
watershed_bremsepunkt_hoyde	
	ОК

Watershed:

- Input D8 flow direction raster: terrengmodell_flowdir
- Input raster or feature pour point data: bremsepunkt_m_hoyde_int
- Pour point field: bremsepunkt_X
- Output raster: watershed_bremsepunkt_x

Watershed: Watershed (3)	×
Parameters Environments	?
Input D8 flow direction raster	
terrengmodell_flowdir	-
Input raster or feature pour point data bremsepunkt_m_hoyde_int	- 🚔 🦯 -
Pour point field	
bremsepunkt_X	•
Output raster	
watershed_bremsepunkt_x	
	ОК

Watershed:

- Input D8 flow direction raster: terrengmodell_flowdir
- Input raster or feature pour point data: bremsepunkt_m_hoyde_int
- Pour point field: bremsepunkt_Y
- Output raster: watershed_bremsepunkt_y

Watershed: Watershed (4)	×
Parameters Environments	?
Input D8 flow direction raster	
terrengmodell_flowdir 🔹	
Input raster or feature pour point data	
bremsepunkt_m_hoyde_int 🔹 🗁 ,	/ -
Pour point field	
bremsepunkt_Y	•
Output raster	
watershed_bremsepunkt_y	
OK	

Watershed:

- Input D8 flow direction raster: terrengmodell_flowdir
- Input raster or feature pour point data: bremsepunkt_m_hoyde_int
- Pour point field: bremsepunkt_ID
- Output raster: watershed_bremsepunkt_ID

Watershed: Watershed (6) ×								
Parameters Environments								
Input D8 flow direction raster								
terrengmodell_flowdir 🔹								
Input raster or feature pour point data								
bremsepunkt_m_hoyde_int 🔹 🧰 🦯	۶ -							
Pour point field								
bremsepunkt_ID	•							
Output raster								
watershed_bremsepunkt_ID								
OK								

Resultatet blir fire liknende rastere, hvor hvert ensfarget område representerer et drensområde per interessante bremsepunkt. Celleverdiene i hvert raster vil inneholde de egenskapene i bremsepunktet vi ønsker å overføre til tilhørende løsnepunkt.

1.5.4 Overføring av informasjon fra watershed-analyser til løsnepunkt

Her benyttes «Extract Multi Values to Points» for å overføre de interessante attributtene fra bremsepunktene til sine tilhørende løsnepunkt.

Extract Multi Values to Points:

- Input point features : losnepunkt_m_hoyde (konstruert i 1.2)
- Input rasters: De fire watershed-rasterne som ble konstruert i forrige steg

Input rasters:	Output field name:
watershed_bremsepunkt_hoyde	bremsepunkt_hoyde
watershed_bremsepunkt_x	bremsepunkt_x
watershed_bremsepunkt_y	bremsepunkt_y
watershed_bremsepunkt_ID	bremsepunkt_ID

Extract Multi Values to Points ×								
Para	meters Environments		?					
Inpu	ut point features							
los	nepunkt_m_hoyde (7)		- 🧀 🦯 -					
(i) Inpu	ut rasters 😔		Output field name					
	watershed_bremsepunkt_hoyde	•	bremsepunkt_hoyde 🔹					
	watershed_bremsepunkt_x	•	bremsepunkt_x 🔹					
	watershed_bremsepunkt_y	•	bremsepunkt_y 🔹					
×	watershed_bremsepunkt_ID	- 🚞	bremsepunkt_ID 🔹					
		•	•					
- 1	Bilinear interpolation of values at point loc	ations						
			ОК					

OBS: Her har jeg endt opp med små bokstaver i navnene for koordinatkolonnene.

«losnepunkt_m_hoyde» datasettet skal nå ha en atributtabell som ligner følgende:

III losnepunkt_m_hoyde (8) ×											
Field: 📰 Add 🕎 Delete 🔠 Calculate 🛛 Selection: 🐙 Zoom To 🖶 Switch 🔲 Clear 💭 Delete											
⊿	OBJECTID	Shape	pointid	losnepunkt_hoyde	losnepunkt_ID	losnepunkt_X	losnepunkt_Y	bremsepunkt_hoyde	bremsepunkt_x	bremsepunkt_y	bremsepunkt_ID
	10	Point	10	192,8956	10	579725,385131	6637668,400111	19053	57972939	663766840	85
	11	Point	11	173,081	11	579771,385131	6637668,400111	17108	57977539	663766840	98
	12	Point	12	171,2931	12	579797,385131	6637668,400111	16885	57979339	663766840	106
	13	Point	13	173,1823	13	579799,385131	6637668,400111	16885	57979339	663766840	106
	14	Point	14	187,389	14	579873,385131	6637668,400111	18204	57986539	663766040	311
	15	Point	15	186,952	15	579905,385131	6637668,400111	18469	57990139	663766840	138
	16	Point	16	188,267	16	579907,385131	6637668,400111	<null></null>	<null></null>	<null></null>	<null></null>
	17	Point	17	189,5769	17	579909,385131	6637668,400111	<null></null>	<null></null>	<null></null>	<null></null>
	18	Point	18	191,0281	18	579911,385131	6637668,400111	<null></null>	<null></null>	<null></null>	<null></null>
	19	Point	19	192,9397	19	579913,385131	6637668,400111	<null></null>	<null></null>	<null></null>	<null></null>
	20	Point	20	194,9027	20	579915,385131	6637668,400111	<null></null>	<null></null>	<null></null>	<null></null>
	21	Point	21	215,4899	21	579687,385131	6637666,400111	21312	57969139	663766640	153
	22	Doint	22	211 5061	22	570607 205121	6627666 400111	10021	57070020	662766040	270

Hvis du får «Null» på enkelte av kolonnene betyr det at det aktuelle løsnepunktet sitt skred faller ut av terrengmodellen før det når noe bremsepunkt. Dette vil være tilfellet flere steder langs kanten av terrengmodellen og vi får her ikke beregnet utfallsområdet til potensielle skred. Denne hendelsen er av typen avgrensningsproblematikk. Hvis en mener det er viktig å regne aktsomhetsområder for disse potensielle skredene, som ikke har noe tilhørende bremsepunkt, er man nødt til å benytte en terrengmodell som dekker et større område.

Løsnepunktene lagres nå med «Feature class to feature class» hvor bremsepunktenes høyde og koordinater sin datatype blir endret tilbake til «Double». Prosedyren er den samme som når vi endret datatypen for attributter til heltall (1.5.1 Prepping av punktdata).

Feature Class to Feature Class:

- Input: losnepunkt_m_hoyde
- Output Location: database
- Output Feature Class: losnepunkt_m_bremseinfo

Feature Class to Feature Class: Feature Class to Feature \times								
Parameters Environments (?)								
Input Features Iosnepunkt_m_hoyde (8): Output Location database								
Output Feature Class								
Expression	use to begin	building						
your query or your expressio	click SQL to on directly.	write						
Add Clause		🌭 🖌 📄 🗟						
🛈 Field Map		9						
Output Fields +	Source Properties							
pointid	Field Name	2						
ilosnepunkt_hoyde	bremsepunkt_hoyde							
ilosnepunkt_ID	Alias							
ilosnepunkt_X	bremsepu	nkt_hoyde						
losnepunkt_Y	Туре	Long Integer 🔹						
bremsepunkt_hoyde	Precision	Short Integer						
bremsepunkt_x		Long Integer						
bremsepunkt_y		Float						
bremsepunkt_ID		Text						
> Geodatabase Settings		Date						
		Blob						
		Raster						

1.6 Utskilling av høyeste løsnepunkt per drensområde

Målet med dette steget er å redusere antall interessante løsnepunkt ytterligere. For å konstruere aktsomhetskart med så lite overflødig beregning, og lav beregningstid som mulig blir løsnepunktene filtrert. I toppen av løsneområdet ligger det mange løsnepunkt tett innpå hverandre. Disse løsnepunktene har mye overlappende område når de ligger rett ved siden av hverandre.

Spesielt hvis de ender opp i samme bremsepunkt. I dette steget vil vi av den grunn skille ut kun det løsnepunktet som ligger høyest i hvert drensområde, før vi går videre i analysen.

1.6.1 Beregning av høyeste løsnepunkt sin høyde

Her benyttes «Summary Statistics» for å gruppere løsnepunkt etter tilhørende bremsepunkt, og regne ut hvilken som er høyest. Beregningen resulterer i en enkel tabell.

Summary statistics:

- Input: losnepunkt_m_bremseinfo
- Output: tabell_max_hoyde_per_bremsepunkt
- «Field»: losnepunkt_hoyde «statistic type»: Maximum
- Case field: bremsepunkt_ID

Summary Statistics: Summary Statistics (2)							
Parameters Environments							
Input Table							
losnepunkt_m_bremseinfo	-						
Output Table							
tabell_max_hoyde_per_bremsepunkt							
Statistics Field(s) Field (√) Statistic Type							
losnepunkt_hoyde 🔻 Maximum	•						
•	•						
Case field 😔							
bremsepunkt_ID							
	ОК						

Resulterende tabell:

IIII tabell_max_hoyde_per_bremsepunkt ×										
Fie	Field: 📰 Add 🕎 Delete 📰 Calculate 🛛 Selection: 🕀 Zoom To 🔮 Switch									
⊿	OBJECTID	bremsepunkt_ID	FREQUENCY	MAX_losnepunkt_hoyde						
	1	<null></null>	193	196,547592						
	2	81	4	207,842621						
	3	85	2	194, 502441						
	4	98	1	173,081009						
	5	106	2	173,182251						
	6	138	1	186,952026						
	7	153	3	216,501678						
	8	155	3	212,438538						
	9	159	1	192,989197						
	10	171	3	173,293076						
	11	185	4	198,305008						
	12	202	1	201 157303						

For å finne ut hvilke løsnepunkt dette faktisk gjelder blir høyden påført løsnepunktene med «Join Field» og ved å bruke «bremsepunkt_ID» som koblingsattributt:

Join Field:

- Input: losnepunkt_m_bremseinfo
- Input Join Field: bremsepunkt_ID
- Join Table: tabell_max_hoyde_per_bremsepunkt
- Output Join Field: bremsepunkt_ID
- Join Fields: MAX_losnepunkt_hoyde

Join Field	×
Parameters Environments	?
Input Table	_
losnepunkt_m_bremseinfo	-
Input Join Field	
bremsepunkt_ID	•
Join Table	_
tabell_max_hoyde_per_bremsepunkt	· 📄
Output Join Field	
bremsepunkt_ID	•
Join Fields 😔	
MAX_losnepunkt_hoyde	•
	•
0	

Resulterende attributt-tabell:

Ⅲ losnepunkt_m_bremseinfo (2) ×											
Field: 📰 A	Field: 🕅 Add 💭 Delete 편 Calculate Selection: 🤴 Zoom To 🖶 Switch 📄 Clear 💭 Delete										
⊿ OBJECT	ID Shape	pointid	losnepunkt_hoyde	losnepunkt_ID	losnepunkt_X	losnepunkt_Y	bremsepunkt_hoyde	bremsepunkt_x	bremsepunkt_y	bremsepunkt_ID	MAX_losnepunkt_hoyde
1	Point	1	216,5017	1	579687,385131	6637668,400111	21312	57969139	663766640	153	216,501678
2	Point	2	214,5187	2	579689,385131	6637668,400111	21312	57969139	663766640	153	216,501678
3	Point	3	212,4385	3	579697,385131	6637668,400111	19816	57971339	663766640	155	212,438538
4	Point	4	210,1887	4	579699,385131	6637668,400111	19816	57971339	663766640	155	212,438538
5	Point	5	207,8426	5	579701,385131	6637668,400111	19827	57971339	663766840	81	207,842621
6	Point	6	205,6805	6	579703,385131	6637668,400111	19827	57971339	663766840	81	207,842621
7	Point	7	203,5065	7	579705,385131	6637668,400111	19827	57971339	663766840	81	207,842621
8	Point	8	201,6358	8	579707,385131	6637668,400111	19827	57971339	663766840	81	207,842621
9	Point	9	194,5024	9	579723,385131	6637668,400111	19053	57972939	663766840	85	194,502441
10	Point	10	192,8956	10	579725,385131	6637668,400111	19053	57972939	663766840	85	194,502441
11	Point	11	173,081	11	579771,385131	6637668,400111	17108	57977539	663766840	98	173,081009
12	Point	12	171,2931	12	579797,385131	6637668,400111	16885	57979339	663766840	106	173,182251
13	Point	13	173,1823	13	579799,385131	6637668,400111	16885	57979339	663766840	106	173,182251
14	Point	14	187,389	14	579873,385131	6637668,400111	18204	57986539	663766040	311	187,389023
15	Point	15	186,952	15	579905,385131	6637668,400111	18469	57990139	663766840	138	186,952026
16	Point	16	188,267	16	579907,385131	6637668,400111	<null></null>	<null></null>	<null></null>	<null></null>	196,547592
	- · ·		400 5750								100 5 17500

1.6.2 Filtrering av løsnepunktene etter høyeste løsnepunkt per drensområde

Til slutt gjøres den faktiske filtreringen ved å benytte «Feature class to feature class», men bare lagre de punktene hvor høyden er den samme som den beregnede maxhøyden for det aktuelle bremsepunktet, og hvor bremsepunkt_ID ikke er Null (hvilket sørger for at vi bare får med løsnepunkt som har et tilhørende bremsepunkt). Dette velges i «Expression» feltet.

Feature Class to Feature Class:

- Input: losnepunkt_m_bremseinfo
- Output Location: database
- Output Feature Class: losnepunkt_m_max_hoyde_per_drensomrade
- Expression:

losnepunkt_hoyde = MAX_losnepunkt_hoyde And bremsepunkt_ID IS
NOT NULL

Feature Class to Feature Class: Feature Class to Feature \times									
Parameters Environments (?)									
Input Features Iosnepunkt_m_bremseinfo (2) Output Location database Output Feature Class Iosnepunkt_m_max_hoyde_per_drensomrade Expression SGL Iosnepunkt_hoyde is Equal to MAX_losnepunkt. Iosnepunkt_hoyde is Equal to MAX_losnepunkt.									
Add Clause Field Map	Source Properties								
pointid	Merge Rule First								
losnepunkt_ID losnepunkt_X losnepunkt_Y bremsepunkt_hoyde bremsepunkt_x bremsepunkt_y bremsepunkt_ID MAX_losnepunkt_hoyde	losnepunkt_m_bremseinf pointid Add New Source ∨								
Geodatabase Settings	ОК								

Resulterende tabell:

💷 losnepunk	t_m_max_	hoyper_	drensomrade 🗙									
Field: 🐺 Add	eld: 🛱 Add 🙀 Delete 🙀 Calculate 🛛 Selection: 🦪 Zoom To 📲 Switch 📄 Clear 💭 Delete											
■ OBJECTID	Shape	pointid	losnepunkt_hoyde	losnepunkt_ID	losnepunkt_X	losnepunkt_Y	bremsepunkt_hoyde	bremsepunkt_x	bremsepunkt_y	bremsepunkt_ID	MAX_losnepunkt_hoyde	
1	Point	1	216,5017	1	579687,385131	6637668,400111	21312	57969139	663766640	153	216,501678	
2	Point	3	212,4385	3	579697,385131	6637668,400111	19816	57971339	663766640	155	212,438538	
3	Point	5	207,8426	5	579701,385131	6637668,400111	19827	57971339	663766840	81	207,842621	
4	Point	9	194, 5024	9	579723,385131	6637668,400111	19053	57972939	663766840	85	194,502441	
5	Point	11	173,081	11	579771,385131	6637668,400111	17108	57977539	663766840	98	173,081009	
6	Point	13	173,1823	13	579799,385131	6637668,400111	16885	57979339	663766840	106	173,182251	
7	Point	14	187,389	14	579873,385131	6637668,400111	18204	57986539	663766040	311	187,389023	
8	Point	15	186,952	15	579905,385131	6637668,400111	18469	57990139	663766840	138	186,952026	
9	Point	22	211,5961	22	579697,385131	6637666,400111	19921	57970939	663766040	278	211,596054	
10	Point	24	192,9892	24	579725,385131	6637666,400111	19060	57972939	663766640	159	192,989197	
11	Point	25	174,4335	25	579769,385131	6637666,400111	17075	57977539	663766440	214	174,433502	
12	Point	29	173,2931	29	579799,385131	6637666,400111	16882	57979339	663766640	171	173,293076	
13	Point	33	211,6808	33	579695,385131	6637664,400111	19868	57970939	663765640	368	211,680817	
14	Point	35	201,1573	35	579707,385131	6637664,400111	19889	57971139	663766440	202	201,157303	
15	Point	36	173,9987	36	579769,385131	6637664,400111	17057	57977539	663766240	251	173,998672	

1.7 Beregning av alfa og beta vinkler

For å beregne alfa og beta vinklene som behøves for videre analyse av utløpslengden til steinsprang, benyttes løsnepunktet (A) og tilhørende bremsepunkt (B) sine høyder, og posisjon (x og y koordinater). Verdiene benyttes for å beregne stigningsvinkelen (beta) (i forhold til horisontalplanet) mellom løsnepunktene og bremsepunktet. Forholdet mellom alfa og beta er også bestemt i tidligere benyttet metodikk for bestemmelse av norske steinsprang med alfa-beta modellen (Derron et al, 2016). I dette steget vil vi beregne alfa- og beta-vinklene for alle løsnepunktene.

1.7.1 Ending av verdier tilbake til desimaltall

Bremsepunktenes verdier endres fra heltallsform tilbake til faktiske verdi ved å dividere med avrundingsoppløsingen. Vi deler derfor høyden og koordinatene med 100 i «Calculate fields».

Calculate Fields:

- Input: losnepunkt_m_max_hoyde_per_drensomrade

Field Name:	Expression:
bremsepunkt_hoyde	!bremsepunkt_hoyde!/100
bremsepunkt_x	!bremsepunkt_x!/100
bremsepunkt_y	!bremsepunkt_y!/100

Calculate Fields: Calculate Fields (2)									
Parameters Environments									
Input Table Iosnepunkt m max hoyde per drensomrade									
Expression Type Python 3	-								
Fields Field Name 😔	Expression								
bremsepunkt_hoyde 🔹	!bremsepunkt_hoyde!/100 •								
bremsepunkt_x 🔹	!bremsepunkt_x!/100 •								
bremsepunkt_y 🔹	!bremsepunkt_y!/100 -								
▼ Code Block	-								
	A								
	ОК								

Resulterende tabell:

	III losnepunkt_m_max_hoydrensomrade (2) ×											
Field:	Field: 🛱 Add 🐺 Delete 🐺 Calculate Selection: 🤴 Zoom To 🖶 Switch 📄 Clear 💭 Delete											
⊿ 0	BJECTID	Shape	pointid	losnepunkt_hoyde	losnepunkt_ID	losnepunkt_X	losnepunkt_Y	bremsepunkt_hoyde	bremsepunkt_x	bremsepunkt_y	bremsepunkt_ID	MAX_losnepunkt_hoyde
1		Point	1	216,5017	1	579687,385131	6637668,400111	213,12	579691,39	6637666,4	153	216,501678
2		Point	3	212,4385	3	579697,385131	6637668,400111	198,16	579713,39	6637666,4	155	212,438538
3		Point	5	207,8426	5	579701,385131	6637668,400111	198,27	579713,39	6637668,4	81	207,842621
4		Point	9	194,5024	9	579723,385131	6637668,400111	190,53	579729,39	6637668,4	85	194, 502441
5		Point	11	173,081	11	579771,385131	6637668,400111	171,08	579775,39	6637668,4	98	173,081009
6		Point	13	173,1823	13	579799,385131	6637668,400111	168,85	579793,39	6637668,4	106	173,182251
7		Point	14	187,389	14	579873,385131	6637668,400111	182,04	579865,39	6637660,4	311	187,389023
8		Point	15	186,952	15	579905,385131	6637668,400111	184,69	579901,39	6637668,4	138	186,952026
9		Point	22	211,5961	22	579697,385131	6637666,400111	199,21	579709,39	6637660,4	278	211,596054
10		Point	24	192,9892	24	579725,385131	6637666,400111	190,6	579729,39	6637666,4	159	192,989197
11		Point	25	174,4335	25	579769,385131	6637666,400111	170,75	579775,39	6637664,4	214	174,433502
12		Point	29	173,2931	29	579799,385131	6637666,400111	168,82	579793,39	6637666,4	171	173,293076
13		Point	33	211,6808	33	579695,385131	6637664,400111	198,68	579709,39	6637656,4	368	211,680817
14		Point	35	201,1573	35	579707,385131	6637664,400111	198,89	579711,39	6637664,4	202	201,157303
15		Point	36	173,9987	36	579769,385131	6637664,400111	170,57	579775,39	6637662,4	251	173,998672
16		Point	39	171,7964	39	579797,385131	6637664,400111	168,25	579791,39	6637664,4	216	171,796371

1.7.2 Beregning av alfavinkel og betavinkel

Først legger vi til feltene som skal beregnes med «Add Field».

Add Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: alfa_vinkel
- Field Type: FLOAT

Add Field: Add Field (3)	х
Parameters Environments	?
Input Table	
losnepunkt_m_max_hoyde_per_	drensomrade (2) 🔹 🖻
Field Name	
alfa_vinkel	•
Field Type	
FLOAT	•
Field Precision	-
Field Scale	-
Field Alias	
	•
✓ Field IsNullable	
Field IsRequired	
Field Domain	
	•
	ОК

Add Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: beta_vinkel
- Field Type: FLOAT

Add Field: Add Field (4)		×
Parameters Environments		?
Input Table		
losnepunkt_m_max_hoyde_per_	drensomrade (3)	- 🧰
Field Name		
beta_vinkel		-
Field Type		
FLOAT		-
Field Precision		-
Field Scale		•
Field Alias		
		•
✓ Field IsNullable		
Field IsRequired		
Field Domain		
		•
		ОК

Deretter beregnes først beta-vinkel med «Calculate Field» med følgende formel:

$$\Delta h = H_A - H_B, \qquad \Delta x = X_A - X_B, \qquad \Delta y = Y_A - Y_B$$
$$\beta = tan^{-1} \left(\frac{\Delta h}{\sqrt{\Delta x^2 + \Delta y^2}}\right)$$

Calculate Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: beta_vinkel =

math.degrees(math.atan((!losnepunkt_hoyde! !bremsepunkt_hoyde!)/(math.sqrt(math.pow(!losnepunkt_X! !bremsepunkt_x! ,2) + math.pow(!losnepunkt_Y! - !bremsepunkt_y!, 2)))))

Formelen beregner vinkelen av en rettlinjet strek, som går fra bremsepunktet til løsnepunktet, mot horisontalplanet.

Og deretter alfa-vinkel med følgende formel:

$$\alpha = 0.77 * \beta + 3.9^{\circ}$$

Calculate Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: alfa_vinkel
- alfa_vinkel =0.77* !beta_vinkel!+3.9

Calculate Field: Calculate Field (4)										
Parameters Environments										
Input Table										
losnepunkt_m_max_hoyde_per_drensomrade (5)										
Field Name										
alfa_vinkel	alfa_vinkel									
Expression Type										
PYTHON_9.3		•								
Expression										
Fields	T Helpers	T								
OBJECTID	Abs()									
Shape	Acos()									
pointid	Asin()									
losnepunkt_hoyde	Atan()									
losnepunkt_ID	Atan2()									
losnepunkt_X	Average()									
losnepunkt_Y	Ceil()	_								
Insert Values	* * / + - =									
alfa_vinkel =										
0.77* !beta_vinkel!+3	3.9									
4		×								
	S 🗸 🧁	→								
Code Block										
		DK								

Nå ser attributt-tabellen ut som dette:

III losnepunkt_m_max_hoydrensomrade (6) ×											
Field: 📰 A	dd 👿 Delete 🕎 C	alculate Sele	ction: 🕂 Zoom	To 📲 Switch	📄 Clear 🙀 Delete						Ξ
⊿ pointid	losnepunkt_hoyde	losnepunkt_ID	losnepunkt_X	losnepunkt_Y	bremsepunkt_hoyde	bremsepunkt_x	bremsepunkt_y	bremsepunkt_ID	MAX_losnepunkt_hoyde	alfa_vinkel	beta_vinkel
1	216,5017	1	579687,385131	6637668,400111	213,12	579691,39	6637666,4	153	216,501678	32,44265	37,06838
3	212,4385	3	579697,385131	6637668,400111	198,16	579713,39	6637666,4	155	212,438538	35,86796	41,51683
5	207,8426	5	579701,385131	6637668,400111	198,27	579713,39	6637668,4	81	207,842621	33,59783	38,56861
9	194, 5024	9	579723,385131	6637668,400111	190,53	579729,39	6637668,4	85	194,502441	29,68408	33,48582
11	173,081	11	579771,385131	6637668,400111	171,08	579775,39	6637668,4	98	173,081009	24,34245	26,54863
13	173,1823	13	579799,385131	6637668,400111	168,85	579793,39	6637668,4	106	173,182251	31,507	35,85325
14	187,389	14	579873,385131	6637668,400111	182,04	579865,39	6637660,4	311	187,389023	23,38937	25,31087
15	186,952	15	579905,385131	6637668,400111	184,69	579901,39	6637668,4	138	186,952026	26,62891	29,51807
22	211,5961	22	579697,385131	6637666,400111	199,21	579709,39	6637660,4	278	211,596054	36,78207	42,70399
24	192,9892	24	579725,385131	6637666,400111	190,6	579729,39	6637666,4	159	192,989197	27,63078	30,81919
25	174,4335	25	579769,385131	6637666,400111	170,75	579775,39	6637664,4	214	174,433502	27,15302	30,19873
29	173,2931	29	579799,385131	6637666,400111	168,82	579793,39	6637666,4	171	173,293076	32,18013	36,72744
33	211,6808	33	579695,385131	6637664,400111	198,68	579709,39	6637656,4	368	211,680817	33,83062	38,87094
35	201,1573	35	579707,385131	6637664,400111	198,89	579711,39	6637664,4	202	201,157303	26,62713	29,51575
36	173,9987	36	579769,385131	6637664,400111	170,57	579775,39	6637662,4	251	173,998672	25,80309	28,44557

1.8 Markering av utløpsområder for potensielle løsnepunkter

For å markere hvilke celler i terrengmodellen som ligger under alfavinkelen i flere dimensjoner enn et snitt behøver vi et verktøy som kan avgrense alfavinkelen i alle retninger ut fra løsnepunktet. Hvis du skal peke en vektor ut fra løsnepunktet med en vinkel (alfa) mot horisontalplanet i alle retninger ender du opp med en kjegle med bratthet lik alfa. Der kjeglen og terrenget møtes vil være maksimal utløpslengde for det aktuelle løsnepunktet i alle retninger.

I denne delen konstrueres derfor et kjeglesnitt mellom terrenget og en kjegle med bratthet lik alfa. Alle områder i terrenget som blir dekket av kjeglen kan markeres som utfallsområdet til det aktuelle løsnepunktet.

Kjeglesnittet realiseres gjennom bruken av «Visibility» i ArcGis og behøver beregning av noen ekstra parametere for å oppføre seg som ønsket. «Visibility» er egentlig et verktøy for å beregne siktlinjer, men vi er ikke interessert i å gjøre denne analysen. Vi ønsker kun å benytte oss av «Observer Parameters» begrensningene til verktøyet.

Under «Observer Parameters» kan man begrense i hvilke retninger en skal teste for sikt fra observatøren (blå prikk) sitt perspektiv. Eksempelvis avgrenser man retningen i horisontalplanet (1) ved å gi horisontal startvinkel (V1) og horisontal sluttvinkel (V2) i forhold til asimut (Nord retning). Avgrensning i vertikalretning (2) skjer ved å oppgi vertikal startvinkel (V3) og vertikal sluttvinkel (V4) i forhold til horisontalplanet, og kan være verdier fra 0 til 360. Negativ vinkel betyr under horisontalplanet (slik vi ser på figuren) og kan være verdier fra 0 til -90. Positiv vinkel betyr over horisontalplanet og kan være verdier fra 0 til 90.

l vår metode ønsker vi å bruke denne avgrensningen til å markere utfallsområdet for steinsprang ved å sette de begrensende verdiene. For vertikal begrensning settes V3 til å være -alfa og lar V4 være tom (for å indikere -90 grader). Vi ønsker også å begrense hvor vidt skredet sprer seg nedover utfallsområde. Her regner vi spredningen ved å ta asimutvinkelen mellom løsnepunkt A og bremsepunkt B i horisontalplanet (asimut_vinkel_A_B) ± 30 (δ) grader. V1 = asimut_vinkel_A_B - 30 og V2 = asimut_vinkel_A_B + 30.

Utfallsområdet for hvert løsnepunkt vil være alle celler i terrenget som ligger innenfor disse begrensningene (Celler som ligger inni grått skravert område fra utfallspunktet sin plassering i terrenget).

Avgrensning av «Visibility» sin siktanalyse I horisontal og vertikal retning. Gråskravert område representerer gjenværende område for siktanalyse, og er begrenset av skyggevinkel α og spredningsvinkel δ.

For å gjennomføre kjeglesnittet må vi først beregne de avgrensende vinklene.

1.8.1 Beregning av begrensningsparametere

Den første parameteren som beregnes er asimut vinkel AB. Vi legger først til feltet med «Add field».

Add Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: asimut_vinkel_A_B
- Field Type: FLOAT

Add Field: Add Field (5)	×
Parameters Environments	(?)
Input Table	
losnepunkt_m_max_hoyde_per_	drensomrade (6) 🔹 🧎
Field Name	
asimut_vinkel_A_B	•
Field Type	
FLOAT	•
Field Precision	-
Field Scale	-
Field Alias	
	•
✓ Field IsNullable	
Field IsRequired	
Field Domain	
	•
	ОК

Så beregnes selve vinkelen (grader) med «Calculate field»:

Calculate Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: asimut_vinkel_A_B
- asimut_vinkel_A_B =

beregn_asimut_A_B(!losnepunkt_X! , !losnepunkt_Y! , !bremsepunkt_x! , !bremsepunkt_y!)

- Code Block:

def beregn_asimut_A_B(x1,y1,x2,y2): dx = x2 - x1 dy = y2 - y1

vinkel = math.degrees(math.atan2((dx),(dy)))

if vinkel < 0: vinkel += 360

return vinkel

Deretter legger vi til feltene «asimut_start» (V1 i figur) og «asimut_stopp» (V2 i figur) hvilket er den øvre og nedre grensen for celler vi ønsker å teste for sikt ved horisontal avgrensning. Vi benytter igjen «add field»:

Add Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: asimut_start
- Field Type: DOUBLE

Add Field: Add Field (6)					
Parameters Environments	?				
Input Table					
losnepunkt_m_max_hoyde_per_	drensomrade (9) 🔹 🚞				
Field Name					
asimut_start	-				
Field Type					
DOUBLE	-				
Field Precision					
Field Scale	-				
Field Alias					
	-				
✓ Field IsNullable					
Field IsRequired					
Field Domain					
	•				
	ОК				

Add Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: asimut_stopp
- Field Type: DOUBLE

Add Field: Add Field (7)	×
Parameters Environments	?
Input Table	
losnepunkt_m_max_hoyde_per	_drensomrade (8) 🔹 🖻
Field Name	
asimut_stopp	•
Field Type	
DOUBLE	•
Field Precision	-
Field Scale	•
Field Alias	
	•
✓ Field IsNullable	
Field IsRequired	
Field Domain	
	•
	ОК

Og deretter «Calculate field» for å beregne disse grensene.

Her beregnes start og stopp vinkel i det horisontale planet for begrensning av spredningen til skredet. Verdiene justeres også, så alle vinkler faller innenfor 0 -> 360 grader.

Calculate Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: asimut_start
- asimut_start = beregn_asimut_start(!asimut_vinkel_A_B!, 60)
- Code Block:

```
def beregn_asimut_start(asimut, spredning):
startvinkel = asimut - (spredning/2)
if startvinkel < 0:
startvinkel += 360
return startvinkel
```

Calculate Field: Calculate Field (9)							
Parameters Environments		?					
Input Table losnepunkt_m_max_hoyde_per_ Field Name	drensomrade (10) 🔹	-					
asimut start		•					
Puthon 3		•					
Fyrion 5							
Expression							
Fields 🍸	Helpers	T					
bremsepunkt_ID MAX_losnepunkt_hoyde alfa_vinkel beta_vinkel asimut_vinkel_A_B asimut_start asimut_stopp	.conjugate() .denominator() .imag() .numerator() .real() .as_integer_ratio() .fromhex()						
Insert Values • asimut_start =	* / + - =						
_ beregn_asimut_start(!asim	ut_vinkel_A_B! , 60)	\$					
Code Block		-					
<pre>def beregn_asimut_start(a startvinkel = asimut if startvinkel < 0: startvinkel += 36 return startvinkel</pre>	simut, spredning): - (spredning/2) 0						
4	•						
	🌭 🗸 📄 🗦						
	ОК						
	L						

Calculate Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: asimut_stopp
- asimut_stopp =
 beregn_asimut_stopp(!asimut_vinkel_A_B!, 60)
- Code Block: def beregn_asimut_stopp(asimut, spredning): stoppvinkel = asimut + (spredning/2) if stoppvinkel > 360: stoppvinkel -= 360 return stoppvinkel

Calculate Field: Calculate Field (6) ×									
Parameters Environment	ts	?							
Input Table Iosnepunkt_m_max_hoyde_per_drensomrade (15) Field Name asimut_stopp Expression Type Python 3 Expression									
Fields	T Helpers	Ţ							
bremsepunkt_ID MAX_losnepunkt_hoyde alfa_vinkel beta_vinkel asimut_vinkel_A_B asimut_start asimut_stopp	 .conjugate() .denominator() .imag() .numerator() .real() .as_integer_ratio() .fromhex() 								
Insert Values asimut_stopp =	* / + - =								
beregn_asimut_scopp(:a	simut_vinkei_A_b: , 00)	Ŧ							
Code Block def beregn_asimut_stop stoppvinkel = asim if stoppvinkel > 3 stoppvinkel -= return stoppvinkel	op(asimut, spredning): nut + (spredning/2) 860: = 360								
<									
	S 🗸 📑 –	*							
	ОК								

Her i prosessen ser tabellen ut som følgende:

Isonepunkt_m_max_hoyrensomrade (12) ×												
Field: 📰 Ad	rield: 頭 Add 頭 Delete 厨 Calculate Selection: 硬 Zoom To 뢉 Switch 🗏 Clear 💭 Delete											
⊿nepunkt_X	losnepunkt_Y	bremsepunkt_hoyde	bremsepunkt_x	bremsepunkt_y	bremsepunkt_ID	MAX_losnepunkt_hoyde	alfa_vinkel	beta_vinkel	asimut_vinkel_A_B	asimut_start	asimut_stopp	
587,385131	6637668,400111	213,12	579691,39	6637666,4	153	216,501678	32,44265	37,06838	116,5384	86,5384	146,5384	
597,385131	6637668,400111	198,16	579713,39	6637666,4	155	212,438538	35,86796	41,51683	97,12326	67,12326	127,12326	
701,385131	6637668,400111	198,27	579713,39	6637668,4	81	207,842621	33,59783	38,56861	90,00053	60,00053	120,00053	
723,385131	6637668,400111	190,53	579729,39	6637668,4	85	194,502441	29,68408	33,48582	90,00105	60,00105	120,00105	
771,385131	6637668,400111	171,08	579775,39	6637668,4	98	173,081009	24,34245	26,54863	90,00158	60,00158	120,00158	
799,385131	6637668,400111	168,85	579793,39	6637668,4	106	173,182251	31,507	35,85325	269,9989	239,9989	299,9989	
373,385131	6637668,400111	182,04	579865,39	6637660,4	311	187,389023	23,38937	25,31087	224,9822	194,9822	254,9822	
905,385131	6637668,400111	184,69	579901,39	6637668,4	138	186,952026	26,62891	29,51807	269,9984	239,9984	299,9984	
597,385131	6637666,400111	199,21	579709,39	6637660,4	278	211,596054	36,78207	42,70399	116,5562	86,5562	146,5562	
725,385131	6637666,400111	190,6	579729,39	6637666,4	159	192,989197	27,63078	30,81919	90,00158	60,00158	120,00158	
769,385131	6637666,400111	170,75	579775,39	6637664,4	214	174,433502	27,15302	30,19873	108,422	78,422	138,422	
799,385131	6637666,400111	168,82	579793,39	6637666,4	171	173,293076	32,18013	36,72744	269,9989	239,9989	299,9989	
595,385131	6637664,400111	198,68	579709,39	6637656,4	368	211,680817	33,83062	38,87094	119,7366	89,7366	149,7366	
707,385131	6637664,400111	198,89	579711,39	6637664,4	202	201,157303	26,62713	29,51575	90,00158	60,00158	120,00158	
769,385131	6637664,400111	170,57	579775,39	6637662,4	251	173,998672	25,80309	28,44557	108,422	78,422	138,422	

Vi gjør også om alfavinkelen til en negativ vinkel ettersom dette tilsvarer avgrensning i nedover-retning under horisontalplanet:

Calculate Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: alfa_vinkel
- alfa_vinkel =-!alfa_vinkel!

Calculate Field: Calculate Field (7) ×								
Parameters Environments (?)								
Input Table								
losnepunkt m max hoyde	-							
Field Name								
alfa vinkel	alfa vinkel							
Expression Type								
Python 3			•					
Expression								
Fields	T	Helpers	Ţ					
bremsepunkt ID		.conjugate()	A					
MAX_losnepunkt_hoyde		.denominator()						
alfa_vinkel		.imag()						
beta_vinkel		.numerator()						
asimut_vinkel_A_B		.real()						
asimut_start		.as_integer_ratio()						
asimut_stopp		.fromhex()						
Insert Values	*	* / + - =						
alfa_vinkel =								
-!alfa_vinkel!			.					
Code Block								
			A					
			-					
•								
		s 🗸 📄	→					
			OK .					

For å sørge for at usannsynlige store områder blir markert for steinsprang er det satt en nedre grense for alfa. Minste verdi for alfa er satt til å være 30 grader og korrigeres via «Calculate field» på følgende måte:

Calculate Field:

- Input: losnepunkt_m_max_hoyde_per_drensomrade
- Field Name: alfa_vinkel
- alfa_vinkel = test_limit(!alfa_vinkel!)
- Code Block: def test_limit(vinkel): if vinkel > -30: vinkel = -30 return (vinkel)

Calculate Field: Calculate Field (0)								
Calculate Field, Calculate Field (6)								
Parameters Environments								
Input Table	1 (17)							
losnepunkt_m_max_hoyde_per_	losnepunkt_m_max_hoyde_per_drensomrade (13)							
Field Name								
alfa_vinkel		•						
Expression Type								
Python 3		•						
Expression								
Fields Y	Helpers	T						
bremsepunkt_ID	.conjugate()							
MAX_losnepunkt_hoyde	.denominator()							
alfa_vinkel	.imag()							
beta_vinkel	.numerator()							
asimut_vinkel_A_B	.real()							
asimut_start	.as_integer_ratio()							
asimut_stopp	.fromhex()							
Incart Values	* / .	•						
	/ + - =							
test_limit(!al+a_vinkel!)		- -						
Code Block								
<pre>def test_limit(vinkel):</pre>								
if vinkel > -30:								
vinkel = -30								
recuri (vincer)								
•								
	In I	→						
	0	к						

Her i prosessen ser tabellen ut som følgende:

	III losnepunkt_m_max_hoyrensomrade (12) ×												
F	Field: 顕 Add g Delete 팽 Calculate Selection: @ Zoom To 뢉 Switch I Clear 및 Delete												
	⊿nepunkt_X	losnepunkt_Y	bremsepunkt_hoyde	bremsepunkt_x	bremsepunkt_y	bremsepunkt_ID	MAX_losnepunkt_hoyde	alfa_vinkel	beta_vinkel	asimut_vinkel_A_B	asimut_start	asimut_stopp	
	587,385131	6637668,400111	213,12	579691,39	6637666,4	153	216,501678	-32,44265	37,06838	116,5384	86,5384	146,5384	
	597,385131	6637668,400111	198,16	579713,39	6637666,4	155	212,438538	-35,86796	41,51683	97,12326	67,12326	127,12326	
	701,385131	6637668,400111	198,27	579713,39	6637668,4	81	207,842621	-33,59783	38,56861	90,00053	60,00053	120,00053	
	723,385131	6637668,400111	190,53	579729,39	6637668,4	85	194,502441	-30	33,48582	90,00105	60,00105	120,00105	
	771,385131	6637668,400111	171,08	579775,39	6637668,4	98	173,081009	-30	26,54863	90,00158	60,00158	120,00158	
	799,385131	6637668,400111	168,85	579793,39	6637668,4	106	173,182251	-31,507	35,85325	269,9989	239,9989	299,9989	
	373,385131	6637668,400111	182,04	579865,39	6637660,4	311	187,389023	-30	25,31087	224,9822	194,9822	254,9822	
	905,385131	6637668,400111	184,69	579901,39	6637668,4	138	186,952026	-30	29,51807	269,9984	239,9984	299,9984	
	597,385131	6637666,400111	199,21	579709,39	6637660,4	278	211,596054	-36,78207	42,70399	116,5562	86,5562	146,5562	
	725,385131	6637666,400111	190,6	579729,39	6637666,4	159	192,989197	-30	30,81919	90,00158	60,00158	120,00158	
	769,385131	6637666,400111	170,75	579775,39	6637664,4	214	174,433502	-30	30,19873	108,422	78,422	138,422	
	799,385131	6637666,400111	168,82	579793,39	6637666,4	171	173,293076	-32,18013	36,72744	269,9989	239,9989	299,9989	
	595,385131	6637664,400111	198,68	579709,39	6637656,4	368	211,680817	-33,83062	38,87094	119,7366	89,7366	149,7366	
	707,385131	6637664,400111	198,89	579711,39	6637664,4	202	201,157303	-30	29,51575	90,00158	60,00158	120,00158	

1.8.2 Utførelse av «Visibility»-analyse

De beregnede avgrensningene benyttes på anviste steder i «Visibility»-verktøyet. Det er også satt et, like stort, høyt tall for «Surface offsett» og «Observer offset». Dette er for at alle celler i terrengmodellen som innfrir vinkelbegrensningene, satt under «Observer parameters», skal bli markert som «synlige». På denne måten markeres alle celler som ligger innenfor vinkelbegrensningene, uavhengig av sikt.

Merk også at «Use NoData for non-visable cells» er huket av.

Visibility:

- Input raster: terrengmodell_fill
- Input point or polyline observer features: losnepunkt_m_max_hoyde_per_drensomrade
- Output: utfallsomrade
- Use NoData for non-visable cells: ☑
- Observer parameters (en neddroppmeny helt i bunn av verktøysvinduet):
 - o Surface offsett: 9999999999
 - o Observer offsett: 9999999999
 - Horizontal start angle: asimut start
 - Horizontal stop angle: asimut_stopp
 - Vertical upper angle: alfa_vinkel

Visibility	×
Parameters Environments	?
Input raster	
terrengmodell_fill	- 📄
Input point or polyline observer features	
losnepunkt_m_max_hoyde_per_drensomrade (14) 🔻 🥯	/-
Output raster	
utfallsomrade	
Output above ground level raster	
Analysis type	
Frequency	•
✓ Use NoData for non-visible cells	
Z factor	1 •
Use earth curvature corrections	
✓ Observer parameters	
Surface offset	
9999999999	-
Observer elevation	
	•
Observer offset	
9999999999	•
Inner radius	
	•
Outer radius	
	•
Horizontal start angle	
asimut_start	•
Horizontal end angle	
asimut_stopp	•
Vertical upper angle	
alfa_vinkel	•
Vertical lower angle	
	•
	ок

«Visibility»- verktøyet resulterer i lignende raster. Alle områder som ikke er «NoData» er ansett som det kombinerte utfallsområdet til løsnepunktene, og beskriver at det er mulighet for steinsprangutfall i disse områdene. Verdiene i rasteret er ellers overflødige og gir ikke informasjon om hyppighet eller sannsynlighet for steinsprang, selv om det kan fremstå slik.

2 Hvordan sette sammen resultatene til et ferdig aktsomhetskart

Utfallsområdet gir en indikasjon på hvor steinsprang går, men må bearbeides mer for å forsikre oss om at aktsomhetskartene blir konservative nok.

Resulterende aktsomhetskart vil bestå av utfallsområdet + løsneområde, og pålagt en buffer på (terrengmodellens oppløsning)*2. Resultatet vil vise polygoner/områder med aktsomhet for steinsprang.

2.1 Sammenslåelse av raster

For å slå sammen utfallsområdet og løsneområdet benyttes «Mosaic to New Raster»:

Mosaic to New Raster:

- Input rasters:
 - o utfallsomrade
 - losneomrade_raster
- Output Location: database
- Raster Dataset Name with Extension: aktsomhet_raster
- Number of Bands: 1
- Mosaic Operator: First
- Mosaic Colormap Mode: First

Iosaic To New Raster								
arameters Environments								
Input Rasters 😔								
utfallsomrade	utfallsomrade 🔹							
rasomrade_raster	-							
	-							
Output Location								
database	•							
Raster Dataset Name with Extens	sion							
aktsomhet_raster								
Spatial Reference for Raster								
	•	()						
Pixel Type								
8 bit unsigned		•						
Cellsize								
Number of Bands		1						
Mosaic Operator								
First		•						
Mosaic Colormap Mode								
First		-						
	OK							

Deretter konverteres rasteret til polygoner ved å benytte «Raster to Polygon» etterfulgt av «Dissolve» for å lage ett sammenhengende polygon:

Raster to Polygon:

- Input: aktsomhet_raster
- Output: aktsomhet_polygon
- Simplify polygons ☑

Raster to Polygon: Raster to	Polygon (2)	×
Parameters Environments		?
Input raster		
aktsomhet_raster	•	
Field		
Value		•
Output polygon features		
aktsomhet_polygon		
✓ Simplify polygons		
Create multipart features		
Maximum vertices per polygon		
feature		
	ОК	

Dissolve:

- Input: aktsomhet_polygon
- Output: aktsomhet_polygon_Dissolve
- Create multipart features:

Х
?
- 🧀 🦯 -
/pe
-
ОК

(«Create multipart features» skal ikke være huket av)

2.2 Buffer

Hele aktsomhetspolygonet blir bufret med (terrengmodellens oppløsning)*2 med «Buffer»-verktøyet:

Buffer:

- Input: aktsomhet_polygon_Dissolve
- Output: aktsomhetsomrader_ferdigprodusert
- Distance: 4 Meters
- Dissolve Type: Dissolve all output features into a single feature

Buffer	X
Parameters Environments	?
Input Features	
aktsomhet_polygon_Dissolve	- 🧀 🦯 -
Output Feature Class	
aktsomhetsomrader_ferdigprod	lusert 🦳
Distance [value or field]	Linear Unit 🔹
4	Meters •
Side Type	
Full	•
End Type	
Round	•
Method	
Planar	•
Dissolve Type	
Dissolve all output features into	a single feature 🔹 👻
	ОК

De polygonene man nå sitter igjen med er de produserte aktsomhetsområdene for steinsprang, ved bruk av terrengmodell med GSD på 2 meter.

Kilder

Bakkehøi, S., Domaas, U. og Lied, K. (1983) «Calculation of Snow Avalanche Runout Distance», *Annals of Glaciology*. Cambridge University Press, 4, s. 24–29. doi: 10.3189/S0260305500005188.

Derron, M. H., Stalsberg, K. og Sletten, K. (2016) *Method for susceptibility mapping of rock falls in Norway, Technical report [Upublisert manuskript], NGU Rapport.*

Devoli, G. *mfl.* (2011) «Delrapport steinsprang, steinskred og fjellskred», *NVE Rapport*, (15/2011), s. 1–120.

Heim, A. (1932) «Bergsturz und Menschenleben», *Naturforschenden Gesellschaft in Zürich*, (20), s. 108–154. doi: 10.5169/seals-9840.

Lied, K. og Bakkehøi, S. (1980) «Empirical Calculations of Snow–Avalanche Run–out Distance Based on Topographic Parameters», *Journal of Glaciology*. Cambridge University Press, 26(94), s. 165–177. doi: 10.3189/S0022143000010704.

NVE (2011a) «Flaum- og skredfare i arealplanar», NVE Retningslinjer, (2/2011), s. 1-40.

NVE (2011b) «Plan for skredfarekartlegging», NVE Rapport, (14/2011), s. 1–90.